Idea Behind the Dogbone

- Only one linac per turn instead of two, but pass through twice
 - ◆ Half the linac for a given number of turns, or
 - ◆ Combine two linacs into one long linac
 - **★** Low energy turn-arounds minimum length
 - ★ 420° per pass
 - ★ Compare to 360° arc per pass, but length from high energy
 - ★ Easier switchyard!!!
 - ◆ Optimum some compromise between these

Cost Optimization

- Design specs
 - ◆ Output of Study I "preaccelerator" at 3 GeV
 - RLA to 20 GeV
- Design methodology
 - ◆ Semi-automated longitudinal design
 - Start with ellipse freom preaccelerator
 - Minimize energy spread
 - Barely fit into bucket
 - Phase rotate rapidly from incoming ellipse to "matched" ellipse
- Optimize cost as a function of number of linac passes
 - Costs based on FNAL study
 - ★ Linac: 38 per GeV
 - * Arc
 - > Proportional to length (or, equivalently, degree-GeV)
 - > Proportional to energy spread
 - > 0.18 per half arc per GeV per percent
 - * For comparison, RLA1 plus RLA2 in Study I were 500 units.

Results

- Optimum costs
 - ◆ Racetrack: 6 turns, 231 units
 - ◆ Dogbone: 7 linac passes, 205 units; 11% savings
 - ◆ Note: racetrack for 4 turns: 246 units; 7% premium
- Cost savings mostly in arcs
 - ◆ Dogbone: 16% more angle
 - ◆ Dogbone: slightly larger energy spreads
 - ◆ Dogbone: average length cut roughly in half due to short arcs
 - ◆ Motto: No savings if don't take shortcuts
- Cavaets
 - Storage ring cost: energy spread
 - ★ Dogbone: ±457 MeV
 - ★ Racetrack: ±322 MeV
 - Increased arc costs associated with reverse bend
 - ◆ Beamline crossings

FFAG Recirculators

- A couple of arc designs on the table
 - ◆ Smaller energy range: factor of 2-3
 - Isochronous and non-isochronous
- Problem is with longitudinal dynamics
- Getting phase right:
 - Prefer isochronous
 - Arc not perfectly isochronous
 - **★** Limits number of turns before walk off crest
 - * Shift phase of stored energy: mild frequency shift (few part 10^{-4})
 - ◆ No synchrotron osillations: beam loading gives energy drift
 - **★** Two nearby frequencies: ride slope of beat wave
- Non-isochronous
 - Need significant phase shifting (frequency shift: couple 10^{-3} to couple 10^{-2})
- Proposed solution for frequency shift:
 - Store energy in SC storage cavities
 - Switch rapidly to NC accelerating cavities
 - ★ Shift frequency of NC cavities until matches SC cavity, energy transfers
 - Ferrite in NC cavity to continue frequency shift
 - Less worry with energy loss in ferrite